Recent Publications
2023
-
“The Superfund Research Program Analytics Portal: Linking Environmental Chemical Exposure To Biological Phenotypes.”. Sci Data 10 (1). Sci Data: 151. doi:10.1038/s41597-023-02021-5.. 2023.
-
“Coupling Environmental Whole Mixture Toxicity Screening With Unbiased Rna-Seq Reveals Site-Specific Biological Responses In Zebrafish.”. Toxics 11 (3). Toxics. doi:10.3390/toxics11030201.. 2023.
-
“3' Rna-Seq Is Superior To Standard Rna-Seq In Cases Of Sparse Data But Inferior At Identifying Toxicity Pathways In A Model Organism.”. Front Bioinform 3. Front Bioinform: 1234218. doi:10.3389/fbinf.2023.1234218.. 2023.
-
“Advances In Pah Mixture Toxicology Enabled By Zebrafish.”. Curr Opin Toxicol 34. Curr Opin Toxicol. doi:10.1016/j.cotox.2023.100392.. 2023.
-
“A Crispr-Cas9 Mutation In Sox9B Long Intergenic Noncoding Rna (Slincr) Affects Zebrafish Development, Behavior, And Regeneration.”. Toxicol Sci. Toxicol Sci. doi:10.1093/toxsci/kfad050.. 2023.
-
“Review Of The Zebrafish As A Model To Investigate Per- And Polyfluoroalkyl Substance Toxicity.”. Toxicol Sci. Toxicol Sci. doi:10.1093/toxsci/kfad051.. 2023.
2022
-
“Development And Applications Of A Zebrafish () Cyp1A-Targeted Monoclonal Antibody (Crc4) With Reactivity Across Vertebrate Taxa: Evidence For A Conserved Cyp1A Epitope.”. Toxics 10 (7). Toxics. doi:10.3390/toxics10070404.. 2022.
-
“Utilizing A Population-Genetic Framework To Test For Gene-Environment Interactions Between Zebrafish Behavior And Chemical Exposure.”. Toxics 10 (12). Toxics. doi:10.3390/toxics10120769.. 2022.
-
“The Ahr2-Dependent Wfikkn1 Gene Influences Zebrafish Transcriptome, Proteome, And Behavior.”. Toxicol Sci 187 (2). Toxicol Sci: 325-344. doi:10.1093/toxsci/kfac037.. 2022.
-
“Concentration-Response Gene Expression Analysis In Zebrafish Reveals Phenotypically-Anchored Transcriptional Responses To Retene.”. Front Toxicol 4. Front Toxicol: 950503. doi:10.3389/ftox.2022.950503.. 2022.
-
“A Comparative Multi-System Approach To Characterizing Bioactivity Of Commonly Occurring Chemicals.”. Int J Environ Res Public Health 19 (7). Int J Environ Res Public Health. doi:10.3390/ijerph19073829.. 2022.
-
“Leveraging Multiple Data Streams For Prioritization Of Mixtures For Hazard Characterization.”. Toxics 10 (11). Toxics. doi:10.3390/toxics10110651.. 2022.
-
“Dietary Perfluorohexanoic Acid (Pfhxa) Exposures In Juvenile Zebrafish Produce Subtle Behavioral Effects Across Generations.”. Toxics 10 (7). Toxics. doi:10.3390/toxics10070372.. 2022.
-
“Leveraging A High-Throughput Screening Method To Identify Mechanisms Of Individual Susceptibility Differences In A Genetically Diverse Zebrafish Model.”. Front Toxicol 4. Front Toxicol: 846221. doi:10.3389/ftox.2022.846221.. 2022.
2021
-
“Phenotypically Anchored Mrna And Mirna Expression Profiling In Zebrafish Reveals Flame Retardant Chemical Toxicity Networks.”. Front Cell Dev Biol 9. Front Cell Dev Biol: 663032. doi:10.3389/fcell.2021.663032.. 2021.
-
“Developmental Hazard Of Environmentally Persistent Free Radicals And Protective Effect Of Tempol In Zebrafish Model.”. Toxics 9 (1). Toxics. doi:10.3390/toxics9010012.. 2021.
-
“Developmental Toxicity In Zebrafish (Danio Rerio) Exposed To Uranium: A Comparison With Lead, Cadmium, And Iron.”. Environ Pollut 269. Environ Pollut: 116097. doi:10.1016/j.envpol.2020.116097.. 2021.
-
“Gene Co-Expression Network Analysis In Zebrafish Reveals Chemical Class Specific Modules.”. Bmc Genomics 22 (1). Bmc Genomics: 658. doi:10.1186/s12864-021-07940-4.. 2021.
-
“Concurrent Evaluation Of Mortality And Behavioral Responses: A Fast And Efficient Testing Approach For High-Throughput Chemical Hazard Identification.”. Front Toxicol 3. Front Toxicol: 670496. doi:10.3389/ftox.2021.670496.. 2021.
-
“Uncovering Evidence For Endocrine-Disrupting Chemicals That Elicit Differential Susceptibility Through Gene-Environment Interactions.”. Toxics 9 (4). Toxics. doi:10.3390/toxics9040077.. 2021.
2020
-
“Systematic Assessment Of Exposure Variations On Observed Bioactivity In Zebrafish Chemical Screening.”. Toxics 8 (4). Toxics. doi:10.3390/toxics8040087.. 2020.
-
“The Multi-Dimensional Embryonic Zebrafish Platform Predicts Flame Retardant Bioactivity.”. Reprod Toxicol 96. Reprod Toxicol: 359-369. doi:10.1016/j.reprotox.2020.08.007.. 2020.
-
“Rapid Well-Plate Assays For Motor And Social Behaviors In Larval Zebrafish.”. Behav Brain Res 391. Behav Brain Res: 112625. doi:10.1016/j.bbr.2020.112625.. 2020.
2019
-
“Coupling Genome-Wide Transcriptomics And Developmental Toxicity Profiles In Zebrafish To Characterize Polycyclic Aromatic Hydrocarbon (Pah) Hazard.”. Int J Mol Sci 20 (10). Int J Mol Sci. doi:10.3390/ijms20102570.. 2019.
-
“Formation Of Pah Derivatives And Increased Developmental Toxicity During Steam Enhanced Extraction Remediation Of Creosote Contaminated Superfund Soil.”. Environ Sci Technol 53 (8). Environ Sci Technol: 4460-4469. doi:10.1021/acs.est.8b07231.. 2019.
-
“Comparative Analysis Of Zebrafish And Planarian Model Systems For Developmental Neurotoxicity Screens Using An 87-Compound Library.”. Toxicol Sci 167 (1). Toxicol Sci: 15-25. doi:10.1093/toxsci/kfy180.. 2019.
-
“Time-Dependent Behavioral Data From Zebrafish Reveals Novel Signatures Of Chemical Toxicity Using Point Of Departure Analysis.”. Comput Toxicol 9. Comput Toxicol: 50-60. doi:10.1016/j.comtox.2018.11.001.. 2019.
-
“Bioinformatics Resource Manager: A Systems Biology Web Tool For Microrna And Omics Data Integration.”. Bmc Bioinformatics 20 (1). Bmc Bioinformatics: 255. doi:10.1186/s12859-019-2805-6.. 2019.